Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Food Res Int ; 137: 109288, 2020 11.
Article in English | MEDLINE | ID: covidwho-276163

ABSTRACT

Early life is a crucial period for the development of the intestinal microbiota and is related to the body's immunity. Yet research is lacking regarding the effect of stachyose on infants gut microbiomes at this stage and the mechanism is not clear. Therefore, in this experiment, feces samples collected from infants were transplanted into germ-free mice, to explore the effect of stachyose on the intestinal microbiota and host gut barrier. We found that stachyose promoted the relative abundance of A. muciniphila in human feces; enhanced the symbiotic relationships of A. muciniphila; increased the short-chain fatty acid level, and secretory immunoglobulin A level; reduced the levels of lipopolysaccharide, IL-1, IL-17 and TNF-α through downregulated the expression of NF-κB; increased expression of tight junction proteins (occludin and ZO-1) and goblet cell through A. muciniphila. The intake of stachyose is conducive to promoting the proliferation of beneficial bacteria and enhancing the intestinal barrier in germ-free mice. This research provides a theoretical basis for the use of prebiotics to improve intestinal microbiota and barrier in humans.


Subject(s)
Akkermansia , Fecal Microbiota Transplantation , Animals , Humans , Inflammation , Mice , Oligosaccharides , Verrucomicrobia
SELECTION OF CITATIONS
SEARCH DETAIL